כמעט כל אחד מאיתנו מקמט אניירות במהלך חייו. אנחנו משליכים את הנייר מעבר לעורף, היישר אל סל האשפה הקרוב, ושוכחים ממנו. אך מסתבר שיש מי שמוצאים ביריעה המקומטת הזו עולם ומלואו.
חוקרים מאוניברסיטת תל אביב ומהטכניון הצליחו לראשונה למפות את הקשר בין רשת הקשרים הסבוכה שנוצרת ביריעה דקה לאחר קימוטים חוזרים ונשנים שלה לבין התכונות המכאניות המפתיעות שלה, ובראשן היכולת של המערכת לקודד ולאכסן זיכרונות מכאניים. החוקרים אומרים כי חשיבות המחקר איננה רק בפיצוח המערכת עצמה, אלא גם בתובנות שהיא מספקת על משפחה רחבה של מערכות פיזיקליות מורכבות בתחום החומר המעובה.
המחקר התבצע בהובלת הדוקטורנט דור שוחט וד"ר יואב לחיני מבית הספר לפיזיקה ואסטרונומיה באוניברסיטת תל אביב. את נושא המידול והסימולציות במחקר הוביל ד"ר דניאל הקסנר מהפקולטה להנדסת מכונות בטכניון. המחקר פורסם לאחרונה בכתב העת PNAS.
החוקרים גילו כיצד רשת הקיפולים והקמטים שנוצרת בעת קימוט של יריעות דקות על ידי מאמץ חיצוני, מביאה לשינוי דרסטי בתכונותיה המכאניות של היריעה. תהליך יצירת הרשת כשלעצמו מאפשר קידוד של המאמצים שהופעלו על הנייר עד אותו הרגע, כמעין "זיכרון" פיזיקלי של המערכת. אך באופן מפתיע, לאחר הקימוט מסוגלת היריעה לאחסן זיכרונות מכאניים נוספים, מבלי ליצור קפלים או קמטים חדשים.
ד"ר לחיני הסביר: "כשאנחנו מאחסנים מידע בדיסק הקשיח של המחשב שלנו, אנחנו ממירים אותו לצופן שמורכב מהספרות אפס ואחת בלבד. פיזית, כל ספרה כזו מקודדת ברכיב מגנטי עם שני מצבים יציבים שנקרא 'ביט', כשכיוון השדה המגנטי שלו (למעלה או למטה) מקודד את ערך הספרה (אפס או אחת). מעבר בין שני המצבים, לטובת קידוד או קריאה של הזיכרון, מתאפשר על ידי תופעת שנקראת לולאת חשל, או היסטרזיס".
החוקר הוסיף: "מה שזיהינו ביריעות המקומטות הוא תופעה דומה, אבל בעלת אופי מכאני. מסתבר שכאשר מקמטים את היריעה נוצר בה מערך סבוך של קימוטים, כאשר כל אחד מהם מתפקד כלולאת חשל קטנה עם שני מצבים יציבים - מעין 'ביט' מכאני. שני המצבים נבדלים בגיאומטריה שלהם, כאשר הקמט יכול לבלוט פנימה או החוצה מהיריעה. לרכיב אחד כזה אנו קוראים היסטרון, והוא המרכיב הבסיסי של תגובת הזיכרון של החומר כולו. אוסף ההיסטרונים שממנו בנויה היריעה כולה יכול לקודד ולשמור זיכרונות מגוונים של אירועים מכאניים שונים שחוותה היריעה. כך, על ידי תכנון מניפולציות מכאניות שונות, אפשר לשמור ולקרוא זיכרון מתוך המערכת”
הדוקטורנט דור שוחט הוסיף כי "האינטראקציה שקיימת בין ההיסטרונים הללו ממלאת תפקיד חשוב בתכונות המכניות הכלליות של היריעה. כל אחד מהם וכולם יחד 'מקודדים' את התהליכים שהנייר עובר, כך שעקרונית, באמצעות מיפוי וניתוח הקימוטים ביריעה ניתן לשחזר את הפעולות שהתבצעו עליו בדיעבד ו'לקרוא' את הזיכרון. עוד מסתבר שבגלל האינטרקציות החזקות, נוצר מצב שנקרא בעגה המקצועית ״תסכול גיאומטרי״. במצב זה, בגלל המבנה הלא סדור של הקימוטים, ההיסטרונים מפריעים אחד לשני והיריעה המקומטת מתקשה להגיע למצב אנרגטי נמוך, מה שמשכלל עוד יותר את התגובה המכאנית שלה. בכך יש דמיון למערכת מגנטית מרתקת שנקראת זכוכית ספין (spin-glass), ולמערכות לא מסודרות אחרות".
לדברי החוקרים, בשנים האחרונות התרחב עד מאוד חקר המערכות הפיזיקליות המורכבות (Complex Systems), אשר דורשות שימוש במודלים תאורטיים יצירתיים וחדשניים שלוקחים בחשבון מספר גדול של דרגות חופש הכרוכות זו בזו – ולא תמיד ניתן לתאר את הדינמיקה ביניהם באמצעות פתרון אנליטי המבוסס על תכונות דרגת החופש הבודדת. השלם, במקרה זה, עולה על סך חלקיו.
ברוח זו, שוחט הוסיף: "כיוון שאין פתרון פשוט למערכות מורכבות שכאלה, כדי להבין אותן לעומק יש להבין את הקשר בין התנהגות דרגת חופש בודדת לבין התנהגות המערכת כולה. המחקר על יריעות מקומטות מאפשר ליצור חיבורים כאלה, בזכות המימדים האופייניים הגדולים שלהן. די להחזיק נייר מקומט ביד ולצפות במכאניקה שלו, בכדי לקבל אינטואיציה פיזיקלית. דוגמה פשוטה היא זיכרון הצורה שיש ליריעה המקומטת – אם נכופף אותה מסביב לחפץ מסוים היא תקבל את צורתו מבלי שיווצרו קמטים חדשים - הודות להיסטרונים שמרכיבים אותה שמעניקים לה יכולת לקבל מספר גדול של צורות יציבות". החוקרים מסכמים כי המסקנות החדשות חורגות ממערכת הניסוי הספציפית, והן שופכות אור על היווצרות זיכרון פיזיקלי במערכות מורכבות נוספות, בהן הגישה לדרגות החופש הבודדות קשה יותר".